New Representations of the Group Inverse of2×2Block Matrices
نویسندگان
چکیده
منابع مشابه
New Representations of the Group Inverse of 2×2 Block Matrices
This paper presents a full rank factorization of a 2 × 2 block matrix without any restriction concerning the group inverse. Applying this factorization, we obtain an explicit representation of the group inverse in terms of four individual blocks of the partitioned matrix without certain restriction. We also derive some important coincidence theorems, including the expressions of the group inver...
متن کاملEla a Note on Block Representations of the Group Inverse of Laplacian Matrices
Let G be a weighted graph with Laplacian matrix L and signless Laplacian matrix Q. In this note, block representations for the group inverse of L and Q are given. The resistance distance in a graph can be obtained from the block representation of the group inverse of L.
متن کاملRepresentations and sign pattern of the group inverse for some block matrices
Let M= ( A B C 0 ) be a complex square matrix where A is square. When BCB = 0, rank(BC) = rank(B) and the group inverse of ( BAB 0 CB 0 ) exists, the group inverse of M exists if and only if rank(BC + A ( BAB ) π BA) = rank(B). In this case, a representation of M in terms of the group inverse and Moore-Penrose inverse of its subblocks is given. Let A be a real matrix. The sign pattern of A is a...
متن کاملEla Representations for the Drazin Inverse of Block Cyclic Matrices
REPRESENTATIONS FOR THE DRAZIN INVERSE OF BLOCK CYCLIC MATRICES M. CATRAL AND P. VAN DEN DRIESSCHE Abstract. A formula for the Drazin inverse of a block k-cyclic (k ≥ 2) matrix A with nonzeros only in blocks Ai,i+1, for i = 1, . . . , k (mod k) is presented in terms of the Drazin inverse of a smaller order product of the nonzero blocks of A, namely Bi = Ai,i+1 · · ·Ai−1,i for some i. Bounds on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2013
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2013/247028